

 Navigation

 	
 index

 	
 next |

 	Flask-RESTful-DRY 0.3 documentation

Flask-RESTful-DRY

Contents:

	flask.ext.dry.model
	flask.ext.dry.model.model

	Other Modules

	flask.ext.dry.api
	Intent

	Declarative Programming

	Re-Usable Steps

	Creating Classes Dynamically

	Conclusion

	See Also

Source Repository

Mercurial [http://mercurial.selenic.com/] is used for the source code repository. The repository is hosted
on BitBucket.org here [https://bitbucket.org/dangyogi/flask-restful-dry].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-RESTful-DRY 0.3 documentation

flask.ext.dry.model

This has the Model class and validation code that is added to the
Flask-SQLAlchemy [https://pythonhosted.org/Flask-SQLAlchemy/] model.

flask.ext.dry.model.model

Other Modules

	flask.ext.dry.model.columns

	flask.ext.dry.model.validation

	flask.ext.dry.model.utils

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-RESTful-DRY 0.3 documentation

 	flask.ext.dry.model

flask.ext.dry.model.columns

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-RESTful-DRY 0.3 documentation

 	flask.ext.dry.model

flask.ext.dry.model.validation

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-RESTful-DRY 0.3 documentation

 	flask.ext.dry.model

flask.ext.dry.model.utils

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-RESTful-DRY 0.3 documentation

flask.ext.dry.api

This has the API infrastructure code used to build apis with DRY.

Intent

This code increases the ability to practice DRY coding (Do not Repeat
Yourself). It does this by providing three basic capabilities:

	Support for declarative programming.

	Support for dynamically creating a set of classes multiple times (like a
cookie cutter) containing different declarations for different specific
use cases.

	Support for implementing HTTP methods from a set of standard re-usable
steps.

This turns procedural programming into a declarative form and makes it
more re-usable.

Declarative Programming

One way to raise the bar on DRY is by moving from procedural programming to
declarative programming.

Procedural programming specifies how something is to be done indirectly,
through a series of executable statements.

Declarative programming specifies how something is to be done by stating it
directly. This allows us to write one set of functions that are instructed
by these declarations on what is needed for each specific use case. Thus,
one set of functions may be re-used for a much wider variety of use cases.
The declarations allow extensive parameterization, or configuration, of the
re-usable functions so that the code in these functions does not need
to be repeated for each use case. This gives us our DRY goal.

Declarations as Class Variables

In Python, these declarations are made by setting class variables on classes.
A common library can provide different common patterns of code as different
base classes. These base classes have default declarations that can be
overridden by their derived classes.

Many of these declarations are tuples of values and the derived class needs
to be able to manipulate the default set of values by modifying them (e.g.,
adding more values, or removing values) rather than completely replacing them.
Thus, the derived class needs access to its base class’ attributes during the
definition of the derived class:

	class base:

	foo = (‘a’, ‘b’)

	class derived(base):

	foo += (‘c’, ‘d’)

This capability is provided by the declarative metaclass.

Re-Usable Steps

HTTP methods must do many things: check various request headers,
perform database accesses, validate user data, possibly update the
database, and create a response with various response headers.

The number of combinations of these things is quite large, making it hard to
imagine how to have a one-size-fits-all (DRY) HTTP method.

But if the processing required by the HTTP method is broken down into small
steps, it becomes clear that many of these steps can be shared by several
HTTP methods:

	Process conditional GET headers (If-None-Match, If-Modified-Since)

	Process conditional update headers (If-Match, If-Unmodified-Since)

	Check CSRF token

	Check Accept header

	Check Content-Type header

	Check authorization

	Get 1 row from database

	Get several rows from database

	Insert 1 row

	Update 1 row

	Delete 1 row

	Unpack JSON request body

	Get current user

	Set ETag response header

	Set Last-Modified response header

	Set caching response headers

	Set Location response header

	Validate User Data

	Check for and report errors

	Filter allowed columns

	Add HATEOAS links

	Convert response to JSON

Looking at it like this, the HTTP method itself could be specified as simply
a sequence of these standard steps.

So we have changed HTTP methods from being specified procedurally (as
executable statements), to being specified declaratively (as a simple tuple
of these steps).

Flask-RESTful Resources

How would we apply this to Flask-RESTful [https://flask-restful.readthedocs.org] Resources [https://flask-restful.readthedocs.org/en/0.3.1/quickstart.html#resourceful-routing], so that we can specify
template resources?

Step 1: Combining HTTP Methods

The first step is to combine the various HTTP methods into a single _run
method that can be re-used by all to run the steps for that method. This
looks like:

>>> from flask.ext.dry.api.class_init import declarative

>>> class item_url(metaclass=declarative):
... get_steps = ('a', 'c', 'd')
... put_steps = ('a', 'b', 'c', 'e')
... delete_steps = ('b', 'd', 'e')
... def get(self, *keys):
... return self._run(self.get_steps, *keys)
... def put(self, *keys):
... return self._run(self.put_steps, *keys)
... def delete(self, *keys):
... return self._run(self.delete_steps, *keys)
... def _run(self, steps, *keys): # DRY HTTP Method
... self.keys = keys
... for step in steps:
... print("doing", step)
... return 'response'

Note

This would also need to be derived from the Resource class in
flask.ext.restful.

This could then be used for different item urls, which could each modify the
steps needed for that use case:

>>> class venue_item(item_url):
... get_steps += ('f', 'g')

>>> class zipcode_item(item_url):
... put_steps += ('w', 'y')

Note the addition of the ‘f’ and ‘g’ steps for venues vs. zipcodes:

>>> venue_item().get(24)
doing a
doing c
doing d
doing f
doing g
'response'

>>> zipcode_item().get('33123')
doing a
doing c
doing d
'response'

And the addition of the ‘w’ and ‘y’ steps for zipcodes vs. venues:

>>> venue_item().put(24)
doing a
doing b
doing c
doing e
'response'

>>> zipcode_item().put('33123')
doing a
doing b
doing c
doing e
doing w
doing y
'response'

Steps are Just Functions

Each step ends up as a function that takes the above objects as a “context”.
This same context is passed to each of the steps run for the HTTP method. The
context provides two things:

	A way to pass values from one step to the next. The url parameters are
set on the context by the _run method before the steps are run, and the
final step sets a “response” attribute on the object, which is returned
from the _run method.

	Step declarations, to make each step configurable.

Step 2: Ordering of Steps

The steps need to be run in the proper sequence. When derived classes (like
venue_item and zipcode_item above) add steps to their base class’
list, they are placed at the end of the list of steps. This isn’t necessarily
their proper place in the list.

To solve this problem, the step functions have “needs” and “provides”
attributes on them to identify what they are expecting, and what they are
providing within the context that all of them share. These are used to
automatically put the steps into the proper order before they are run.

The “needs” and “provides” attributes are added by a step decorator.

>>> from flask.ext.dry import step

Consider the following steps:

>>> @step(needs='keys', provides='row,output_row,etag,last_modified')
... def get_row(context):
... context.output_row = context.row = "row for " + str(context.keys)
... print("get_row: got keys:", context.keys, "providing:", context.row)
... context.etag = "etag for row " + str(context.keys)
... context.last_modified = "last_modified for row " + str(context.keys)

>>> @step(needs='etag,last_modified', provides='_checked')
... def conditional_get_check(context):
... print("conditional_get_check: for etag:", context.etag,
... "last_modified:", context.last_modified)

>>> @step(needs='etag,last_modified', provides='_checked')
... def conditional_update_check(context):
... print("conditional_update_check: for etag:", context.etag,
... "last_modified:", context.last_modified)

>>> @step(needs='roles,row', provides='_checked')
... def authorize(context):
... print("authorize: got roles:", context.roles,
... "for row:", context.row)

>>> @step(needs='output_row,columns,_checked', provides='output_row')
... def filter(context):
... ans = "filtered " + context.output_row
... print("filter: got row:", context.output_row,
... "filtered by:", context.columns,
... "providing:", ans)
... context.output_row = ans

>>> @step(needs='row,_checked', provides='modified_row')
... def modify(context):
... context.modified_row = "modified " + context.row
... print("modify: got row:", context.row,
... "providing:", context.modified_row)

>>> @step(needs='modified_row,keys', provides='_done')
... def update(context):
... print("update: updating keys:", context.keys,
... "to row:", context.modified_row)

>>> @step(needs='keys,_checked', provides='_done')
... def delete(context):
... print("delete: deleting keys:", context.keys)

>>> @step(needs='output_row,_checked,_done', provides='output')
... def output_row(context):
... print("output_row: outputting row:", context.output_row)
... context.output = context.output_row

>>> @step(needs='_checked,_done', provides='output')
... def no_output(context):
... print("no_output: outputting None")
... context.output = None

>>> @step(needs='status,output', provides='response')
... def create_response(context):
... context.response = context.status, context.output
... print("create_response: returning:", context.response)

These are ordered by generate_steps:

>>> from flask.ext.dry.api.step_utils import generate_steps

Which takes a context to verify that it has whatever the steps need to start
out.

>>> class dummy: pass
>>> context = dummy()
>>> context.roles = ('premium_member', 'management')
>>> context.status = 200
>>> context.keys = (42,)

It also wants something to identify the context in errors:

>>> context.url_class_name = 'dummy'
>>> context.location = 'doctest'

And what attributes are not currently present in the context, but will be
provided later:

>>> context.provided_attributes = ()

The unordered steps are in the step_fns attribute of the context:

>>> context.step_fns = (authorize, conditional_get_check, get_row,
... create_response, output_row)

We can now get the steps to execute for this context:

>>> for _step in generate_steps(context):
... print(_step.__name__)
get_row
authorize
conditional_get_check
output_row
create_response

Note

This step ordering process actually happens once at program startup. The
steps are specified in a step_fns attributes by the classes, and these
are converted to a steps attribute that has all of these steps in the
proper order.

Step 3: Step Declarations

The attrs class is used to inject both the steps list, and their
declarations into the different HTTP methods.

>>> from flask.ext.dry import attrs, extend

Thus, rather than get_steps, put_steps, etc; we have get_attrs,
put_attrs, etc. So now, our item_url class looks like this:

>>> class item_url(metaclass=declarative):
... # boilerplate:
... url_class_name = 'item_url'
... location = 'doctest'
... provided_attributes = ()
... debug = 0
...
... roles = () # default declaration for authorize step
... step_fns = (get_row, authorize, create_response)
... get_attrs = attrs(status=200, # declaration for create_response
... step_fns=extend(conditional_get_check,
... output_row,
...))
... put_attrs = attrs(status=204, # declaration for create_response
... step_fns=extend(conditional_update_check,
... modify,
... update,
... no_output,
...))
... delete_attrs = attrs(status=204, # declaration for create_response
... step_fns=extend(conditional_update_check,
... delete,
... no_output,
...))
...
... def get(self, *keys):
... return self._run(self.get_attrs, *keys)
... def put(self, *keys):
... return self._run(self.put_attrs, *keys)
... def delete(self, *keys):
... return self._run(self.delete_attrs, *keys)
... def _run(self, method_attrs, *keys):
... self.keys = keys
... method_attrs.copy_into(self)
... for step in generate_steps(self):
... step(context=self)
... return self.response

And our derived classes look like this:

>>> class venue_item(item_url):
... put_attrs.roles = \
... delete_attrs.roles = extend('cma', 'management')

>>> class zipcode_item(item_url):
... get_attrs.columns = ('a', 'b', 'c') # declaration for filter
... get_attrs.step_fns = extend(filter)
... put_attrs.roles = \
... delete_attrs.roles = extend('management')

And here’s what happens when we run them:

>>> venue_item().get(24)
get_row: got keys: (24,) providing: row for (24,)
authorize: got roles: () for row: row for (24,)
conditional_get_check: for etag: etag for row (24,) last_modified: last_modified for row (24,)
output_row: outputting row: row for (24,)
create_response: returning: (200, 'row for (24,)')
(200, 'row for (24,)')

Notice the extra filter step on the next one with its columns declaration:

>>> zipcode_item().get('33123')
get_row: got keys: ('33123',) providing: row for ('33123',)
authorize: got roles: () for row: row for ('33123',)
conditional_get_check: for etag: etag for row ('33123',) last_modified: last_modified for row ('33123',)
filter: got row: row for ('33123',) filtered by: ('a', 'b', 'c') providing: filtered row for ('33123',)
output_row: outputting row: filtered row for ('33123',)
create_response: returning: (200, "filtered row for ('33123',)")
(200, "filtered row for ('33123',)")

And the change in response status and different roles on the next two as an
example of step declarations:

>>> venue_item().put(24)
get_row: got keys: (24,) providing: row for (24,)
authorize: got roles: ('cma', 'management') for row: row for (24,)
conditional_update_check: for etag: etag for row (24,) last_modified: last_modified for row (24,)
modify: got row: row for (24,) providing: modified row for (24,)
update: updating keys: (24,) to row: modified row for (24,)
no_output: outputting None
create_response: returning: (204, None)
(204, None)

>>> zipcode_item().put('33123')
get_row: got keys: ('33123',) providing: row for ('33123',)
authorize: got roles: ('management',) for row: row for ('33123',)
conditional_update_check: for etag: etag for row ('33123',) last_modified: last_modified for row ('33123',)
modify: got row: row for ('33123',) providing: modified row for ('33123',)
update: updating keys: ('33123',) to row: modified row for ('33123',)
no_output: outputting None
create_response: returning: (204, None)
(204, None)

Creating Classes Dynamically

Our final challenge concerns the granularity of Flask-RESTful [https://flask-restful.readthedocs.org] Resources [https://flask-restful.readthedocs.org/en/0.3.1/quickstart.html#resourceful-routing].
Each Resource encapsulates all of the HTTP methods to a single URL.

But there is often more than one URL associated with a single conceptual
entity. For example, each type of item may have the following URLs:

	/api/items

	To access lists of items (GET) and create new ones (POST).

	/api/items/metadata

	To get metadata information on what columns are allowed on POST and what
validation rules to apply (GET).

	/api/items/<int:item_id>

	To access/update/delete a single item (GET, PUT, DELETE).

	/api/items/<int:item_id>/metadata

	To get metadata information on what columns are allowed on PUT and what
validation rules to apply (GET).

It would be nice to be able to declare a single conceptual resource class that
would take care of all of these URL resources automatically.

To do this, the conceptual resource class must create the url classes
dynamically. This is easily done with the new_class [https://docs.python.org/3/library/types.html#types.new_class] function in the standard
Python library:

>>> from types import new_class

Now we can write a cookie_cutter class that dynamically creates derived
classes and sets attributes on them (see attrs):

>>> class Declarative_Resource(metaclass=declarative):
... url_classes = () # default declaration
...
... @classmethod
... def resource_init(cls):
... cls._url_resources = {} # Keep the url resource classes.
... for url_class_name in cls.url_classes:
...
... # Derive the new url resource class from this one, so that
... # declarations on this class are inherited by all url
... # resource classes.
... new_url_class = new_class("{}__{}".format(cls.__name__,
... url_class_name),
... bases=(cls,))
...
... # Copy the attributes for this class into the new class.
... getattr(cls, url_class_name).copy_into(new_url_class)
...
... cls._url_resources[url_class_name] = new_url_class
...
... @classmethod
... def dump(cls):
... for name, url_class in sorted(cls._url_resources.items()):
... print("{}:".format(url_class.__name__))
... for attr in sorted(getattr(cls, name)._names):
... print(" {} = {}"
... .format(attr, getattr(url_class, attr)))

And write several usage patterns as cookie_cutters:

>>> class Item_Resource(Declarative_Resource):
... url_classes += ('collection', 'self')
... collection = attrs(foo=10, bar=20)
... self = attrs(foo=1, bar=2)

>>> class List_Resource(Declarative_Resource):
... url_classes += ('list',)
... list = attrs(foo=100, bar=200)

And finally use these patterns to create classes for specific use cases.
These may override any of the attrs values in their base classes to cause the
derived classes (that will be created later by cookie_cutter) to have
different class variables:

>>> class venues(Item_Resource):
... self.foo = 11

>>> class artists(Item_Resource):
... collection.bar = 22

>>> class genres(List_Resource):
... list.foo = 111

Now we initialize these classes:

>>> venues.resource_init()
>>> artists.resource_init()
>>> genres.resource_init()

And see what we ended up with:

>>> venues.dump()
venues__collection:
 bar = 20
 foo = 10
venues__self:
 bar = 2
 foo = 11

>>> artists.dump()
artists__collection:
 bar = 22
 foo = 10
artists__self:
 bar = 2
 foo = 1

>>> genres.dump()
genres__list:
 bar = 200
 foo = 111

Conclusion

The two techniques, Re-Usable Steps and
Creating Classes Dynamically, are combined by nesting the method
attrs for the Step 3: Step Declarations within the url resource attrs
in the Declarative_Resource.

We’ll start by adding the HTTP methods to the Declarative_Resource:

>>> class Declarative_Resource_2(Declarative_Resource):
... # Boilerplate
... debug = 0
... provided_attributes = ()
... url_class_name = 'bogus'
... location = 'doctest'
...
... # Default all HTTP methods to dis-allowed
... get_attrs = put_attrs = delete_attrs = post_attrs = None
...
... def get(self, *keys):
... import sys
... print("self", self, file=sys.stderr)
... return self._run(self.get_attrs, *keys)
... def put(self, *keys):
... return self._run(self.put_attrs, *keys)
... def delete(self, *keys):
... return self._run(self.delete_attrs, *keys)
... def post(self, *keys):
... return self._run(self.post_attrs, *keys)
...
... def _run(self, method_attrs, *keys):
... if method_attrs is None:
... return 405, None
... method_attrs.copy_into(self)
... if keys:
... self.keys = keys
... for step in generate_steps(self):
... step(context=self)
... return self.response

This forms the top level in a three tier API class hierarchy. This class
should work for all APIs!

Note

Currently, this class is called DRY_Resource.

Now we can define different kinds of templates that create different groups of
URL Resources [https://flask-restful.readthedocs.org/en/0.3.1/quickstart.html#resourceful-routing]. To do the Item_Resource template will require a few more steps
for the collection URL:

>>> @step(provides='rows')
... def get_rows(context):
... context.rows = ('row 1', 'row 2')
... print("get_rows: providing:", context.rows)

>>> @step(needs='rows', provides='etag,last_modified')
... def hash_etag_for_rows(context):
... context.etag = 'hashed etag'
... context.last_modified = None
... print("hash_etag_for_rows: got rows:", context.rows,
... "providing etag:", context.etag)

>>> @step(needs='rows,_checked,_done', provides='output')
... def output_rows(context):
... print("output_rows: outputting rows:", context.rows)
... context.output = dict(_response=context.rows)

>>> @step(provides='_done')
... def insert(context):
... print("insert: inserting new row")

We combine the two techniques into a single Item_Resource class. This is an
example of the middle of the three tiers of API classes. There only needs to
be a few of these (currently Item_Resource and List_Resource).

>>> class Item_Resource_2(Declarative_Resource_2):
... url_classes = extend('collection', 'self')
...
... # default declarations for all URLs:
... roles = ()
... step_fns = (authorize, create_response)
... get_attrs = attrs(status = 200,
... step_fns = step_fns + (conditional_get_check,))
... update_step_fns = attrs(status = 204,
... step_fns = step_fns + (
... conditional_update_check,
... no_output,))
...
... # This attrs is for the new collection URL class.
... collection = attrs(row = None,
... get_attrs = get_attrs,
... # This attrs is for the post HTTP method.
... post_attrs = attrs(status=204,
... step_fns = step_fns))
... collection.get_attrs.step_fns = extend(get_rows,
... hash_etag_for_rows,
... output_rows)
... collection.post_attrs.step_fns = extend(insert, no_output)
...
... self = attrs(get_attrs = get_attrs,
... put_attrs = update_step_fns,
... delete_attrs = update_step_fns)
... self.get_attrs.step_fns = extend(get_row, output_row)
... self.put_attrs.step_fns = extend(modify, update)
... self.delete_attrs.step_fns = extend(delete)

Note

In the interest of brevity, the metadata URLs have been omitted.

This class can then be used to define specific resource groups. This forms
the final, third, tier of the API class hierarchy. There are lots of these!
These are what we’re trying to make as simple as possible.

>>> class Venues(Item_Resource_2):
... self.put_attrs.roles = \
... self.delete_attrs.roles = \
... collection.post_attrs.roles = extend('cma', 'management')

>>> class Zipcodes(Item_Resource_2):
... columns = ('a', 'b', 'c') # declaration for filter
... self.get_attrs.step_fns = \
... collection.get_attrs.step_fns = extend(filter)
... self.put_attrs.roles = \
... self.delete_attrs.roles = extend('management')
... collection.post_attrs = None # No posts allowed!

Initialize the third tier classes:

>>> Venues.resource_init()
>>> Zipcodes.resource_init()

Let’s give these a try!

These first two are completely defaulted:

>>> Venues._url_resources['self']().get(42)
get_row: got keys: (42,) providing: row for (42,)
authorize: got roles: () for row: row for (42,)
conditional_get_check: for etag: etag for row (42,) last_modified: last_modified for row (42,)
output_row: outputting row: row for (42,)
create_response: returning: (200, 'row for (42,)')
(200, 'row for (42,)')

>>> Venues._url_resources['collection']().get()
get_rows: providing: ('row 1', 'row 2')
authorize: got roles: () for row: None
hash_etag_for_rows: got rows: ('row 1', 'row 2') providing etag: hashed etag
conditional_get_check: for etag: hashed etag last_modified: None
output_rows: outputting rows: ('row 1', 'row 2')
create_response: returning: (200, {'_response': ('row 1', 'row 2')})
(200, {'_response': ('row 1', 'row 2')})

This has changed the roles declaration for the authorize step.

>>> Venues._url_resources['collection']().post()
authorize: got roles: ('cma', 'management') for row: None
insert: inserting new row
no_output: outputting None
create_response: returning: (204, None)
(204, None)

This has an added filter step:

>>> Zipcodes._url_resources['self']().get('33123')
get_row: got keys: ('33123',) providing: row for ('33123',)
authorize: got roles: () for row: row for ('33123',)
conditional_get_check: for etag: etag for row ('33123',) last_modified: last_modified for row ('33123',)
filter: got row: row for ('33123',) filtered by: ('a', 'b', 'c') providing: filtered row for ('33123',)
output_row: outputting row: filtered row for ('33123',)
create_response: returning: (200, "filtered row for ('33123',)")
(200, "filtered row for ('33123',)")

Zipcodes has disabled the post method:

>>> Zipcodes._url_resources['collection']().post()
(405, None)

See Also

	declarative
	Problem

	Solution

	attrs
	Basics

	Modifiers

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-RESTful-DRY 0.3 documentation

 	flask.ext.dry.api

declarative

Problem

Python does not let derived class have access to their base classes while the
derived class is being defined:

>>> class base:
... foo = ('a', 'b')

>>> class derived(base):
... foo += ('c', 'd')
Traceback (most recent call last):
 ...
NameError: name 'foo' is not defined

Solution

The declarative metaclass solves this:

>>> from flask.ext.dry.api.class_init import declarative

>>> class base(metaclass=declarative):
... foo = ('a', 'b')
>>> class derived(base):
... foo += ('c', 'd')

>>> derived.foo
('a', 'b', 'c', 'd')

Now methods defined on the base class may access these class variables as the
declarations that tell them what to do:

>>> class base(metaclass=declarative):
... foo = ('a', 'b') # default values
... def do_foo(self):
... for i in self.foo:
... print("doing", i)
>>> class derived1(base):
... foo += ('c', 'd') # extend default values
>>> class derived2(base):
... foo = ('x', 'y') # replace default values
>>> derived1().do_foo()
doing a
doing b
doing c
doing d
>>> derived2().do_foo()
doing x
doing y

The declarative metaclass makes a deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of each base class attribute
referenced by the derived class. This prevents updates made in the derived
class from corrupting the base class:

>>> class base(metaclass=declarative):
... foo = ['a', 'b']
>>> class derived(base):
... foo.extend(('c', 'd'))
>>> derived.foo
['a', 'b', 'c', 'd']
>>> base.foo
['a', 'b']

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Flask-RESTful-DRY 0.3 documentation

 	flask.ext.dry.api

attrs

Attrs, allow you to define a set of attributes that will be applied later to
a class or object.

>>> from flask.ext.dry import attrs

Basics

Attrs are created with keyword arguments:

>>> a = attrs(foo=1, bar=2)

They may be copied into a class:

>>> class c: pass
>>> a.copy_into(c)
>>> c.foo
1
>>> c.bar
2

Or an object:

>>> class d:
... # for lookup modifier, later
... def get_expanded_attr(self, attr): return getattr(self, attr)
>>> obj = d()
>>> a.copy_into(obj)
>>> obj.foo
1
>>> obj.bar
2

In the latter case, the class isn’t changed:

>>> d.foo
Traceback (most recent call last):
 ...
AttributeError: type object 'd' has no attribute 'foo'

They may also be changed, like any other object:

>>> a.foo = 100
>>> obj2 = d()
>>> a.copy_into(obj2)
>>> obj2.foo
100
>>> obj2.bar
2

Finally, attrs make a deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of all values assigned to them, as well as the
values copied into the receiving class or object so that one object can not
corrupt the value of another.

>>> l = [1, 2, 3]
>>> a = attrs(foo=l) # foo is a deepcopy of l
>>> obj4 = d()
>>> a.copy_into(obj4) # obj4.foo is a deepcopy of a.foo

>>> a.foo.append(4)
>>> obj5 = d()
>>> a.copy_into(obj5) # obj5.foo is a second deepcopy of a.foo

>>> obj4.foo.append(5)
>>> obj5.foo.append(6)
>>> obj4.foo
[1, 2, 3, 5]
>>> obj5.foo
[1, 2, 3, 4, 6]
>>> a.foo
[1, 2, 3, 4]
>>> l
[1, 2, 3]

Modifiers

Normally, the attrs attributes replace any attributes of the same name
already in the class or object.

>>> a = attrs(foo=1, bar=2)
>>> obj6 = d()
>>> obj6.bar = 400
>>> obj6.baz = 500
>>> a.copy_into(obj6)
>>> obj6.foo # set by a.copy_into
1
>>> obj6.bar # overridden by a.copy_into
2
>>> obj6.baz # untouched by a.copy_into
500

But attrs may also have modifiers as attribute values. When these are copied
into a class or object, they modify any pre-existing value.

Two of these operate on tuples: extend and remove.

>>> from flask.ext.dry import extend, remove

>>> a = attrs(foo=extend(4, 5), bar=remove(4, 6))
>>> obj5 = d()
>>> obj5.foo = (1, 2, 3)
>>> obj5.bar = (4, 5, 6)
>>> a.copy_into(obj5)
>>> obj5.foo
(1, 2, 3, 4, 5)
>>> obj5.bar
(5,)

Finally, lookup can be used to lookup a value at the time that the
copy_into is done:

>>> from flask.ext.dry import lookup

>>> a = attrs(foo=lookup('x'), bar=lookup('y.z'))
>>> obj5 = d()
>>> obj5.x = 'first x value'
>>> obj5.y = d()
>>> obj5.y.z = 'first x.z value'
>>> a.copy_into(obj5)
>>> obj5.foo
'first x value'
>>> obj5.bar
'first x.z value'

>>> obj5.x = 'second x value'
>>> obj5.y.z = 'second x.z value'
>>> a.copy_into(obj5)
>>> obj5.foo
'second x value'
>>> obj5.bar
'second x.z value'

You may create your own modifiers by deriving from modifier. Read
the source code to see how to do this.

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Flask-RESTful-DRY 0.3 documentation

Index

 Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

search.html

 Navigation

 		
 index

 		Flask-RESTful-DRY 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Bruce Frederiksen.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

